**ORIGINAL ARTICLE** 



# Plant Species Used for Infectious Diseases: Features of Classification Position and Chemical Composition

## Popov P.L.

<sup>1</sup> V.B. Sochava Institute of Geography of the Siberian Branch of the Russian Academy of Sciences, Irkutsk, Ulaanbaatar 1, Russia

\*E-Mail: <u>plp@irigs.irk.ru</u>

Received February 22, 2024

Species of medicinal plants are grouped into sets, each of which was used in folk or scientific medicine for a specific infectious disease. A total of 59 infections and species sets were taken into account. Increases in the occurrence, in such sets, of species belonging to certain families and species containing chemical compounds of certain groups (flavonoids, terpenoids, alkaloids, phenols, lactones, coumarins, iridoids, xanthones) were studied. The mathematical-statistical Student's t-test was used. As a rule, in the set of species used for infectious diseases, the occurrence of some (from 1 to 12) families is significantly increased. 67 families are characterized by a significantly increased occurrence in at least one such set. Significant differences were noted between families in the number of infections with which they are associated through their affinity for the sets of plants used. It was also revealed that, as a rule, in the set of species used for infections of compounds was significantly increased. Significant differences were noted between infectious diseases, the occurrence of certain (from 1 to 8) groups of compounds was significantly increased. Significant differences were noted between infections in combinations of groups of compounds that were reliably related to the plant species used. Information about the considered patterns can be used to assess the prospects of plant species, families, and chemical compounds in the study of their antimicrobial and antiviral activity.

Key words: Plant species, infectious diseases, families, groups of chemical compounds, significant increase in occurrence Let us recall the circumstances that make the problem of infectious diseases especially relevant and connect it with the study of plants.

1. New infectious agents are discovered (nonexistent or not identified, not previously studied).

 "Old" (long-known) infectious agents develop resistance to the drugs used.

3. The importance of microscopic fungi and actinomycetes as a source of antibiotics is weakening (partly due to the factor noted in paragraph 2).

4. New technological possibilities for obtaining and using substances effective against infectious diseases are emerging. This point should be emphasized. Antibiotics, as a class of medications, appeared at one time precisely because of this factor.

5. One of the sources of drugs used for infections, not only for folk medicine, but also for scientific medicine, are plants. (At the same time, in scientific medicine, herbal remedies, in the treatment of infections, are far inferior to chemotherapy drugs). Mostly herbal preparations such as various extracts are used (including in scientific medicine). They are more important in chronic infections than in acute ones. There are still few precedents for the use of individual compounds of plant origin as highly effective agents against infectious diseases (as opposed to antibiotics from fungi and actinomycetes), but they exist. (The most significant examples are the malaria alkaloid guinine from Cinchona officinalis and related species, and the sesquiterpene lactone artemisinin from Artemisia annua (Bhattarai et al., 2007)). Apparently, the potential of plants has not been sufficiently exploited.

Plant species used for various infectious diseases are numerous; often dozens or hundreds of species were used for one infection, which raises the problem of selecting the most promising species and substances as research objects.

Plant species used in infections are unevenly distributed in the phylogenetic system. There are taxa, for example families, that are rich in such species, and others that are poor. One of the possible approaches to assessing the prospects of plant species is to establish the occurrence of species used for a certain infection (group of infections) in a certain family or other taxon of plants (Popov & Botvinkin, 2008). Cases of increased occurrence are especially important. It is unlikely that an increased occurrence of species with a particular use in a particular taxon will occur by chance (for example, species used for respiratory infections in the family *Lamiaceae*, compared with parts of the medicinal plant flora that do not belong to this family).

In cases where such an excess is detected, the question arises about the factor that determined this pattern, and it is acceptable to assume that this factor is the usefulness of using species of a given taxon for a given infection. Accordingly, taxa of increased occurrence of species with a specific application are a promising field for the search for new species with similar properties, or for in-depth study of already discovered activities. As the chemical characteristics of plant families are studied (particularly within the framework of chemosystematics), it becomes possible, or improves, to correlate relevant information with information about the affinity of species with particular medicinal applications for particular families.

Another approach is also of interest - to identify an increase in the occurrence of substances belonging to different groups and having experimentally established antimicrobial and/or antiviral activity in sets of species used for certain infectious diseases. In this case, we compare the number of species used for a certain disease, containing at least one compound of a certain group that has an antimicrobial and/or antiviral effect, with the number of such species in the flora of medicinal plants that were not used for a given disease. For example, the occurrence of plant species containing terpenoids with antiviral or antimicrobial action in the set of species used for respiratory infections can be compared with the occurrence of such species in the part of the flora of medicinal plants that were not used for respiratory infections. If such increases in occurrence are detected, the question arises about the factors that create them.

Relevant information can be taken into account to assess the prospects of certain plant species and compounds when searching for means of preventing and treating infectious diseases. Next we will look at these issues in more detail.

#### MATERIALS AND METHODS

The source we used (Budantsev et al., 2001) contains information on the medical use of 2834 species of wild plants of the flora of the Russian Federation, but reflects the medical traditions of other countries where these species are found. The source reflects the uses of plants in both scientific and folk medicine, both in our time and in earlier eras. The names of the diseases are taken from this source and reflect mainly the knowledge that was formed in the eras when the use of these plants developed; from the point of view of modern medicine, these names are not always accurate, and may reflect groups of diseases of various etiologies, not always infectious (for example, "jaundice"). However, each such concept corresponds to a disease, if not in all, then in a significant proportion of cases, having an infectious etiology.

Another source used (Semikhov, 2001) contains information on the presence of individual compounds in certain plant species, indicating their belonging to different groups, and their biological effect.

We take into account 9 groups of compounds (ibid.): flavonoids, terpeniodes, alkaloids, coumarins, lactones, quinones, phenols, iridoids, xanthones, and four types of experimentally established biological activity: antiviral, antibacterial, antiprotozoal and antimycotic.

The Table provides information on the occurrence in sets of plants used for 59 infectious diseases, species representatives of certain families, and species containing at least one compound belonging to one of 9 groups and possessing antimicrobial, that is, antibacterial, antiprotozoal, antimycotic or (and) antiviral activity.

We did not specifically highlight cases where the activity of a compound was established specifically in relation to the causative agent of a specific disease, the name of which is indicated in the first column of the table, due to their small number. The combination of the types of biological activity of chemical compounds under consideration in one indicator is due to the fact that these activities are in many cases statistically significantly related to each other, and a compound that has established activity against infectious agents of one type can be found to be active against infectious agents of another type. For example, according to our data (the result of calculations from the specified source), out of 1676 (presented in the source) individual chemical compounds of plant origin, 22 compounds have an antiviral effect, 188 have an antibacterial effect, 9 have a combination of these activities. The t value is 5.73. indicating a significant relationship. We have strived to avoid detail that is not achievable in the format of a single article. The purpose of this article is a generalized reflection of some patterns characterizing the chemical composition of plant species used for infectious diseases. This general picture can hopefully be useful in guiding the direction of more detailed research.

Let us give an example of a significantly increased occurrence of plant species used for a certain disease (or a certain group of diseases) in a family, in relation to the part of the flora of medicinal plants of the Russian Federation that does not belong to this family. 393 plant species have been used against respiratory infections, of which 45 species belong to the Lamiaceae family. In total, there are 173 species of medicinal plants in this family in the flora of the Russian Federation. The share of species with this use in the family is 45/173 = 0.26. The share of species used for respiratory infections in the part of the flora that does not belong to Lamiaceae is 2 times less: (393-45)/(2834-173)=0.13. The mathematical-statistical Student's t test allows us to assess the reliability of this difference (or the reliability of the relationship between family membership and application). In this case, t=4.77, which allows us to confidently reject the hypothesis of no connection; the threshold t value of 3.29, which allows us to reject the null hypothesis with a probability of 0.999, is significantly exceeded. (Note that the t value will also be 4.77 if we estimate the concentration of species of the family Lamiaceae in the set of species used for respiratory infections compared with the part of the medicinal plant flora not included in this set. These operations are equivalent.)

Similarly, an increase in the occurrence of species containing at least one compound of the group, for example, terpenoids (at the same time, having experimentally established antimicrobial and/or antiviral activity), is established in the set of species used for respiratory infections. There are 116 species containing at least one compound from the group of terpenoids that has an antimicrobial or antiviral effect. Of these, 48 were used for respiratory infections. In this case t=8.75; this means that plants containing terpenoids with antimicrobial or antiviral activity are found in sets of species used for respiratory infections significantly more often than among species that did not have this use.

#### **RESULTS AND DISCUSSION**

Let's look at the Table. Diseases are listed in descending order of the number of plant species used. Only diseases against which at least 5 plant species were used were taken into account. In addition, only families were taken into account, in each of which at least 5 species were represented in the flora of medicinal plants of the Russian Federation, and in which at least 2 species were used for one of the diseases taken into account. Only families in which a significantly increased occurrence of species used for the corresponding disease is noted are indicated (in the middle column). In cases corresponding to the Student's t-test value from 1.96 to 2.68, the hypothesis of no relationship is rejected with a probability of 0.95, in cases where the t values are from 2.69 to 3.29 with a probability of 0.99, and when higher t values - with a probability of 0.999 (Lakin, 1973).

At the same time, the third column of the table indicates groups of compounds characterized by both reliably and unreliably increased occurrence in the corresponding sets of plants. The number of groups of chemical compounds considered (9) allows for this possibility.

Let us note several circumstances characterizing the information presented in the Table.

Diseases vary dramatically in the number of plant species used. Apparently, this indicator is positively

related to the prevalence of the disease, to the diversity of its causative agents (as we have already noted, some pathologies, the same respiratory infections, are actually groups of diseases, in practice not always accurately distinguished even by modern medicine, caused by typologically heterogeneous agents), with the danger (severity) of the disease. It is possible that the number of species in the flora of the Russian Federation, the preparations of which can have a positive effect on the disease, also influences. Without this assumption, it is difficult to explain why a number of dangerous and widespread diseases in the past, when traditional medicine was being formed, are characterized by a relatively small number of plant species used. (For example, only 5 types of plants were used for the plague; and for other especially dangerous infections, cholera, smallpox and anthrax, 13, 25 and 50, respectively). The intended effect could be to promote recovery or prevent disease, to improve the subjective state of the patient; Apparently, traditional medicine did not neglect even minimal usefulness (Popov & Botvinkin, 2008).

We also note the frequent repetition of the same families in the Table, that is, an increase in the occurrence of species used for different diseases in the same families.

The relevant information is reflected in the following list of families. In parentheses, after the name of the family, is the number of diseases reliably associated with it through an increase in the occurrence of the species used.

Solanaceae (17), Asteraceae, Plantaginaceae (10 each), Lamiaceae. Scrophulariaceae, Rutaceae. Crassulaceae (8 each), Sambucaceae, Rosaceae (7 each), Typhaceae, Violaceae, Dipsacaceae (6 each), Urticaceae, Convallariaceae, Rubiaceae, Euphorbiaceae, Ericaceae (5 each), Betulaceae, Pinaceae, Cuscutaceae, Brassicaceae, Gentianaceae (4 each). Peonaceae, Hipericaceae, Oleaceae. Pyrolaceae, Ranunculaceae, Araceae, Geraniaceae, Valerianaceae, Tiliaceae, Nymphaeceae (3 each), Malvaceae, Cucurbitaceae, Salicaceae, Thymelaceae, Primulaceae, Polygalaceae, Ulmaceae, Fabaceae. Equisetaceae, Onagraceae, Liliaceae, Apiaceae,

Athyriaceae, Convolvulaceae, Grossulariaceae. Campanulaceae, Poaceae (2 each), Hemerocalliaceae, Polygonaceae, Aspleniaceae, Trilliaceae, Fumariaceae, Limoniaceae, Ephedracae. Aristolochiaceae, Potamogetoniaceae, Alismataceae, Iridaceae, Lycopodiaceae, Tamaricaceae. Celastraceae, Orocbanchaceae, Chenopodiaceae, Alliaceae, Fagaceae (1 each).

A significant part of the families represented in the flora of medicinal plants of the Russian Federation do not have reliable connections with any infectious disease, through the occurrence of the species used (for example, the rather large family *Boraginaceae*).

It is acceptable, in our opinion, to assume that the families leading in this indicator statistically gravitate toward chemical compounds that have (each individually) broad antimicrobial and antiviral activity, and/or chemical compounds with narrow activities of this kind, but are relatively numerous. Both situations deserve attention in the context of studying the antimicrobial and antiviral activity of plants.

The size of the family (in terms of the number of species and genera) favours its chemical diversity, and therefore the number of diseases with which it is associated. The relatively small families associated with many diseases (for example, those at the top of the list, with use for 6 diseases or more) deserve more attention: *Solanaceae, Plantaginaceae, Rutaceae, Crassulaceae, Sambucaceae, Typhaceae, Violaceae, Dipsacaceae.* 

Let us consider connections of the "disease-group of compounds with antimicrobial or antiviral effect" type.

As can be seen from the Table, for a set of plant species used for a particular infectious disease, there is typically a significant increase in the occurrence of species containing compounds with antimicrobial and antiviral effects, belonging to at least one group. (The only exception is scarlet fever, which does not form reliable bonds, in the indicated sense, with any group of compounds, however, for flavonoids, it comes very close to the threshold of reliability). According to the table, there are 181 reliable positive connections "disease – group of compounds"; reliable negative – 0.

Unreliable connections, both positive and negative,

also form patterns. Negative connections are not directly indicated in the table, but their number in each cell of the 3rd column is equal to the difference between the total number of substance groups under consideration (9) and the number of positive connections in it. Diseases for which from tens to hundreds of species were used (numbers 1-31 in the table) are characterized by a predominance of positive unreliable connections over negative unreliable connections (98 and 53 connections, respectively). For diseases with a smaller number of species used (numbers 32-59 in the table), the opposite pattern is characteristic (48 unreliable positive and 149 unreliable negative relationships with groups of compounds). Probably, the diversity of the chemical composition of the plant species included in the set and depending on its abundance makes a contribution to this pattern.

The number of species in the set, as well as the number of species containing a compound of a certain group, is factors that are positively associated with the severity of the statistical relationship, if any, which is reflected in the absolute value of the Student's test.

As can be seen from the Table, in many cases, diseases differ significantly in the nature of statistical relationships with groups of chemical compounds (including combinations of reliable relationships). This also applies to diseases that are similar in the number of species used. One can compare in this regard, for example, warts, whooping cough, gonorrhoea and erysipelas (about 60 plant species in each set). Thus, in the kits used for erysipelas and whooping cough, the number of species containing terpenoids was significantly increased. In the set of species used for gonorrhoea, it is unreliably reduced. In the kit used for warts, it was unreliably increased. In the set used for erysipelas, there was a significant increase in the occurrence of 6 groups of compounds (flavonoids, terpenoids, lactones, phenols, alkaloids, coumarins) out of 9, and in the set used for gonorrhoea - in one (flavonoids). This kind of heterogeneity indicates the action of some factors specific to a particular set of species used.

As we have already said, the fact that a plant species is used for a certain disease is presumably due

to the usefulness (maybe small, but practically noticeable) of its use. An increase in the occurrence of species containing compounds of a certain group in a set of species used for a certain disease is, from our point of view, a reason to consider this group of compounds as promising in the search for means of treating or preventing this disease. Bearing in mind that we are talking about infectious diseases and compounds with antimicrobial or antiviral action, it can be assumed that the usefulness is associated with the effect of the compound of this group in relation to the causative agent or causative agents of the disease. But it is necessary to take into account the following circumstance.

Chemical compounds belonging to different groups and having an antibacterial effect reliably gravitate toward the same plant species (Popov, 2021). (For example, among species containing antibacterial terpenoids, the occurrence of species containing antibacterial flavonoids is significantly increased compared to the rest of the flora). It can be assumed that similar patterns exist for species containing compounds with antiviral, antifungal, and antiprotozoal effects. The data presented in the Table are quite consistent with this assumption.

It is likely that the concentration of typologically different compounds with antibacterial action in one plant species is associated with the ecological strategy of this species and the importance of active antibacterial protection for it. Having developed, in the course of evolution, the ability to neutralize bacteria that are dangerous to it (similarly, other microorganisms or viruses), the species has become a useful means of protection against pathogens of humans and animals. Some species have developed this ability to a greater extent, other species to a lesser extent. It can be assumed, on these grounds, that if a species contains a compound that is active against the causative agent of a particular infection, then the likelihood of detecting other antimicrobial or antiviral compounds in it, including those that are not active against a given microorganism or virus, is increased.

If these patterns are real, then they contribute to the presence in the set of species used for a particular infection of many antimicrobial or antiviral compounds, including those that are not active against the pathogen (or pathogens) of this disease. These considerations are speculative; the hypothesis about the contribution of the utility factor to the formation of the statistical relationship "the set of plant species used – the group of chemical compounds in their composition" is not refuted by them.

The large number of reliable connections "disease – group of compounds" makes it difficult to select combinations that deserve the most attention (in terms of the information reflected in the table). Here it is possible to take into account additional conditions: it is quite obvious that the more pronounced of the reliable connections provide a stronger basis for attention than the relatively less pronounced ones.

If the task of the study is to find a group of compounds that are promising in terms of influencing a microorganism or virus that causes a certain infection (the study goes "from infection to substance"), then the most pronounced of the 9 connections of a given disease across groups of compounds deserve increased attention. In our study, the strongest connections correspond to the highest values of the Student's test. For example, this is the connection "respiratory infections – terpenoids", "pulmonary tuberculosis – flavonoids". In the table, the names of compounds in each cell of the third column are ranked by the magnitude of these values.

If the objective of the research is to study the antimicrobial or antiviral properties of a certain group of compounds (the study goes "from substance to infection"), then attention should be paid to the most pronounced of the 59 connections formed by each group of substances with diseases. For example, these are the connections "sepsis – alkaloids", "dysentery – flavonoids".

Both conditions in the given examples coincide, but they can also be separated, for example, the connection "rabies-iridoids" corresponds only to the first condition, the connection "respiratory infections-coumarins" - only to the second.

In addition, situations deserve increased attention when a plant species belongs to a family that is reliably

associated with an infectious disease through intersection with a set of species used against it, and at

the same time, contains a chemical compound of a group that gravitates towards this set.

**Table.** Plant families and groups of chemical compounds occurring with increased frequency in sets of plant species used for major infectious diseases

| Diseases              | Plant families                                                                                                                                                                                                                                                                                             | Groups of substances                                              |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| (number of plant      | (number of medicinal plant species in the family as a                                                                                                                                                                                                                                                      | (number of species containing a                                   |
| species)              | whole; in its part that has a given application;                                                                                                                                                                                                                                                           | compound of this group in the flora of                            |
|                       | Student's t test)                                                                                                                                                                                                                                                                                          | medicinal plants; in its part having this                         |
|                       |                                                                                                                                                                                                                                                                                                            | application; Student's t test)                                    |
| 1. Respiratory        | Lamiaceae (173;45; <b>4,77</b> ). Solanaceae (14;8; <b>4,71</b> );                                                                                                                                                                                                                                         | Terpenoids [116;48; <b>8,75</b> ]                                 |
| infections<br>(393)   | Pinaceae (19;9; <b>4,24</b> ). Rutaceae (8;5; <b>3,99</b> ).                                                                                                                                                                                                                                               | Pnenois [59;27;7,16]                                              |
|                       | Ephedracae (5;3; <b>2,99</b> ). Athyriaceae (8; 4; <b>2,96</b> ).                                                                                                                                                                                                                                          | Flavonolos [246; 71; <b>7,12</b> ]                                |
|                       | Rosaceae (147;29; <b>2,11</b> ). Dipsacaceae (12;4; <b>1,96</b> ).<br>Sambucaceae (7,3, <b>2,22</b> ).                                                                                                                                                                                                     | Alkaloide [/0:1/:3 0]                                             |
|                       |                                                                                                                                                                                                                                                                                                            | Iridoids [62:16: <b>2,75</b> ]                                    |
|                       |                                                                                                                                                                                                                                                                                                            | Lactones [29:7: <b>1.61</b> ]                                     |
|                       |                                                                                                                                                                                                                                                                                                            | Quinones [36;8; <b>1,46</b> ]                                     |
|                       |                                                                                                                                                                                                                                                                                                            | Xanthones [18;3; <b>0,34</b> ]                                    |
| 2. Pulmonary          | Polygalaceae (10;7; <b>5,96).</b> Dipsacaceae (12;7; <b>5,24</b> ).                                                                                                                                                                                                                                        | Flavonoids [246;72; <b>9,54</b> ]                                 |
| tuberculosis          | Plantaginaceae (10;6; <b>4,95</b> ). Pinaceae (19;8; <b>4,33</b> ).<br>Trilliaceae (7;3; <b>2,69</b> ). Urticaceae (7;3; <b>2,69</b> ). Violaceae                                                                                                                                                          | Terpenoids [116;32; <b>5,80</b> ]                                 |
| (313)                 |                                                                                                                                                                                                                                                                                                            | Iridoids [62;19; <b>4,98</b> ]                                    |
|                       | (26;7; <b>2,20</b> ). Betulaceae (29;7; <b>2,26</b> ). Araceae (9;3; <b>2,14</b> ).                                                                                                                                                                                                                        | Coumarins [124;28; <b>4,19</b> ]                                  |
|                       | Scrophulariaceae (85;15; <b>1,97</b> ).                                                                                                                                                                                                                                                                    | Phenois [59;16; <b>3,98</b> ]                                     |
|                       |                                                                                                                                                                                                                                                                                                            | Aikaloids [49;10; <b>2,11</b> ]                                   |
|                       |                                                                                                                                                                                                                                                                                                            | $\begin{bmatrix} 10, 3, 0, 70 \end{bmatrix}$                      |
|                       |                                                                                                                                                                                                                                                                                                            | Quinones [36:4:0 01]                                              |
| 3 Jaundice            | Hemerocalliaceae $(5:4:508)$ Solanaceae $(14:7:585)$                                                                                                                                                                                                                                                       | Alkaloids [49:19:8.08]                                            |
| henatitis             | Nymphaeceae $(7.4:4.83)$ Aspleniaceae $(8:4:4.4.2)$                                                                                                                                                                                                                                                        | Flavonoids [246: 41: <b>5.33</b> ]                                |
| (224)                 | $C_{\rm uscutacae}(7;3;3,43)$ Rutaceae (8:3;3,11)                                                                                                                                                                                                                                                          | Coumarins [124:25: <b>5.17</b> ]                                  |
| (224)                 | <i>Crassulaceae</i> (26:6: <b>2.88</b> ). <i>Gentianaceae</i> (40:8: <b>2.86</b> ).                                                                                                                                                                                                                        | Iridoids [62;12; <b>3,38</b> ]                                    |
|                       | Fumariaceae (10:3; <b>2.59</b> ). Peonaceae (6:2; <b>2.3</b> ).                                                                                                                                                                                                                                            | Phenols [59;27;3,02]                                              |
|                       | Asteraceae (372;40; <b>2,19</b> ). Cucurbitaceae (7;2; <b>2,03</b> ).                                                                                                                                                                                                                                      | Terpenoids [116;15; <b>2,05</b> ]                                 |
|                       |                                                                                                                                                                                                                                                                                                            | Lactones[29;4; <b>1,18</b> ]                                      |
|                       |                                                                                                                                                                                                                                                                                                            | Quinones [36;4; <b>0,72</b> ]                                     |
|                       |                                                                                                                                                                                                                                                                                                            | Xanthones [18;2; <b>0,51</b> ]                                    |
| 4. Dysentery          | Limoniaceae (8;4; <b>4,71</b> ). Typhaceae (5;3; <b>4,59</b> ).                                                                                                                                                                                                                                            | Flavonoids[246; 62; <b>11,48</b> ]                                |
| (203)                 | Geraniaceae (17;6; <b>4,51</b> ). Rosaceae (147;23; <b>4,1</b> ).<br>Oleaceae (8;3; <b>3,33</b> ). Plantaginaceae (10;3; <b>2,81</b> ).<br>Lamiaceae (173;21; <b>2,62</b> ). Polygonaceae (49;8; <b>2,51</b> ).<br>Urticaceae (7;2; <b>2,2</b> ).                                                          | 1 erpenolds [116;28; <b>7,24</b> ]                                |
|                       |                                                                                                                                                                                                                                                                                                            | Coundants [124,23, <b>5,03</b> ]<br>Deepole [50:14: <b>4 00</b> ] |
|                       |                                                                                                                                                                                                                                                                                                            | Iridoids [62:9: <b>2 27</b> ]                                     |
|                       |                                                                                                                                                                                                                                                                                                            | Ouinones [36:5: <b>1.57</b> ]                                     |
|                       |                                                                                                                                                                                                                                                                                                            | Alkaloids [49:6: <b>1.39</b> ]                                    |
|                       |                                                                                                                                                                                                                                                                                                            | Lactones[29;3;0,67]                                               |
| 5. Scrofula           | Rubiaceae (24;8; <b>5,24</b> ). Betulaceae (29;7; <b>3,77</b> ).<br>Malvaceae (17;5; <b>3,75</b> ). Scrophulariaceae (85; 14; <b>3,66</b> ).<br>Grossulariaceae (8;3; <b>3,49</b> ). Violaceae (26;5; <b>2,57</b> ).<br>Ulmaceae (8;2; <b>2,07</b> ). Valerianaceae (23; 4; <b>2,06</b> ).                 | Flavonoids[246; 42;6,8]                                           |
| (190)                 |                                                                                                                                                                                                                                                                                                            | Iridoids [62;16;6,08]                                             |
|                       |                                                                                                                                                                                                                                                                                                            | Terpenoids [116;19; <b>4,25</b> ]                                 |
|                       |                                                                                                                                                                                                                                                                                                            | Coumarins [124;17; <b>3,19</b> ]                                  |
|                       |                                                                                                                                                                                                                                                                                                            | Phenols [59;8; <b>2,13</b> ]                                      |
|                       |                                                                                                                                                                                                                                                                                                            | Alkaloids [49;6; <b>1,56</b> ]                                    |
|                       |                                                                                                                                                                                                                                                                                                            | Quinones [30,4, <b>1,00</b> ]<br>Vanthonos [19:2: <b>0 76</b> ]   |
| C. Dracumania         |                                                                                                                                                                                                                                                                                                            | Additiones [10,2, <b>0,70</b> ]                                   |
| 6. Pneumonia<br>(157) | Plantaginaceae (10; 6; 7,54).<br>Geraniaceae (17;6;5,37). Polygalaceae (10;4;4,77).<br>Iridaceae (17;4;3,25). Peonaceae (6;2;2,98).<br>Asteraceae (372;32;2,77). Urticaceae (7;2;2,67).<br>Oleaceae (8;2;2,41). Rutaceae (8;2;2,41). Rubiaceae<br>(24;4;2,39). Violaceae (26;4;2,2). Pinaceae (19;3;1,96). | Flavonoids[246: 33:5.65]                                          |
|                       |                                                                                                                                                                                                                                                                                                            | Terpenoids [116:18: <b>4.80</b> ]                                 |
|                       |                                                                                                                                                                                                                                                                                                            | Alkaloids [49;10; <b>4.59</b> ]                                   |
|                       |                                                                                                                                                                                                                                                                                                            | Phenols [59;8;3,87]                                               |
|                       |                                                                                                                                                                                                                                                                                                            | Coumarins [124;16; <b>3,67</b> ]                                  |
|                       |                                                                                                                                                                                                                                                                                                            | Xanthones [18;3; <b>3,10</b> ]                                    |
|                       |                                                                                                                                                                                                                                                                                                            | Quinones [36;3; <b>0,74</b> ]                                     |
|                       |                                                                                                                                                                                                                                                                                                            | Lactones[29;2;0,32]                                               |
| 7. Malaria            | Aristochlochiaceae (6;2; <b>3,1</b> ). Asteraceae (372; 31;                                                                                                                                                                                                                                                | Flavonoids[246; 44; <b>9,34</b> ]                                 |
| (148)                 | <b>2,89</b> ). Gentianaceae (40;6; <b>2,8</b> ). Cucurbitaceae                                                                                                                                                                                                                                             | l erpenoids [116;24; <b>7,64</b> ]                                |
|                       | (7;2; <b>2,78</b> ).                                                                                                                                                                                                                                                                                       | Coumarins [124;18; <b>4,76</b> ]                                  |

|                                          | Sambucaceae (7;2; <b>2,78</b> ). Valerianaceae (23;4; <b>2,63</b> ).<br>Betulaceae (29;4; <b>2,09</b> ).                                                                                                                                                                                                                                                                                                                                                                                                                                            | Alkaloids [49;8; <b>3,52]</b><br>Phenols [59;9; <b>3,50</b> ]<br>Quinones [36;5; <b>2,35</b> ]<br>Xanthones [18;3; <b>2,19</b> ]<br>Iridoids [62;7 <b>;2,17</b> ]<br>Lactones[29;2; <b>0,41</b> ]                                                                                                               |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8. Angina<br>(135)                       | Campanulaceae (27;6; <b>4,28</b> ). Tiliaceae (9;3; <b>4,03</b> ).<br>Asteraceae (372;29; <b>2,96</b> ). Sambucaceae (7;2; <b>2,96</b> ).<br>Solanaceae (14;3; <b>2,93</b> ). Scrophulariaceae (85;8; <b>2,04</b> ).                                                                                                                                                                                                                                                                                                                                | Flavonoids[246; 36; <b>7,6</b> ]<br>Terpenoids [116;19; <b>6,0</b> ]<br>Iridoids [62;11; <b>4,83</b> ]<br>Coumarins [124;12; <b>2,63</b> ]<br>Phenols [59;6; <b>1,97</b> ]<br>Alkaloids [49;5; <b>1,80</b> ]<br>Xanthones [18;2; <b>1,27</b> ]<br>Quinones [36;2; <b>0,22</b> ]                                 |
| 9. Purulent<br>wounds<br>(114)           | Pyrolaceae (10;4; <b>5</b> , <b>8</b> ). Ulmaceae (8;3; <b>4</b> , <b>83</b> ).<br>Rubiaceae (24;5; <b>4</b> , <b>21</b> ). Typhaceae (5;2; <b>4</b> , <b>1</b> ).<br>Scrophulariaceae (85;9; <b>3</b> , <b>13</b> ). Ericaceae (38;5; <b>2</b> , <b>89</b> ).<br>Lamiaceae (173;14; <b>2</b> , <b>81</b> ). Plantaginaceae (10;2; <b>2</b> , <b>58</b> ).<br>Ranunculaceae (135;10; <b>2</b> , <b>05</b> ). Hipericaceae<br>(13;2; <b>2</b> , <b>09</b> ). Crassulaceae (26;3; <b>1</b> , <b>96</b> ). Violaceae<br>(26;3; <b>1</b> , <b>96</b> ). | Iridoids [62;16 <b>;8,83</b> ]<br>Phenols [59;12; <b>6,45</b> ]<br>Quinones [36;8; <b>5,59</b> ]<br>Flavonoids[246; 23; <b>4,5</b> ]<br>Lactones[29;4; <b>2,69</b> ]<br>Alkaloids [49;5; <b>2,22</b> ]<br>Terpenoids [116;9; <b>2,09</b> ]<br>Xanthones [18;1; <b>0,33</b> ]<br>Coumarins [124;5; <b>0,01</b> ] |
| 10. Abscesses<br>(113)                   | Araceae (9;2; <b>2,8</b> ). Convallariaceae (17;3; <b>2,89</b> ).<br>Dipsacaceae (12;2; <b>2,23</b> ). Liliaceae (20;6; <b>6,0</b> ).<br>Pinaceae (19;4; <b>3,81</b> ). Potamogetoniaceae (8;4; <b>6,66</b> ).<br>Scrophulariaceae (85;8; <b>2,6</b> ). Thymelaceae (9;3; <b>4,51</b> ).<br>Typhaceae (5;2; <b>4,12</b> ).                                                                                                                                                                                                                          | Iridoids [62;9; <b>4,28</b> ]<br>Flavonoids[246; 18; <b>2,79</b> ]<br>Terpenoids [116;8; <b>1,64</b> ]<br>Coumarins [124;8; <b>1,43</b> ]<br>Phenols [59;4; <b>1,11</b> ]<br>Xanthones [18;1; <b>0,34</b> ]<br>Alkaloids [49;2; <b>0,03</b> ]                                                                   |
| 11. Rabies<br>(98)                       | Alismataceae (6;3;6,25). Euphorbiaceae (41;8;5,67).<br>Solanaceae (14;4;5,16). Convolvulaceae (9;3;4,91).<br>Convallariaceae (17;4;4,54). Gentianaceae (40;6;4,02).<br>Lycopodiaceae (6;2;4,01). Cuscutacae (7;2;3,64).<br>Sambucaceae (7;2;3,64). Dipsacaceae (12;2;2,51).                                                                                                                                                                                                                                                                         | Iridoids [62;8; <b>4,12</b> ]<br>Flavonoids[246; 18; <b>3,47</b> ]<br>Xanthones [18;3; <b>3,08</b> ]<br>Coumarins [124;8; <b>1,87</b> ]<br>Terpenoids [116;7; <b>1,55</b> ]<br>Alkaloids [49;2; <b>0,24</b> ]<br>Lactones[29;1; <b>0,00</b> ]                                                                   |
| 12.<br>Dermatomycoses<br>(87)            | Celastraceae (6;3; <b>6,67</b> ). Solanaceae (14;4; <b>5,55</b> ).<br>Rutaceae (8;2; <b>3,6</b> ). Thymelaceae (9;2; <b>3,34</b> ).<br>Hipericaceae (13;2; <b>2,58</b> ). Crassulaceae (26;3; <b>2,51</b> ).                                                                                                                                                                                                                                                                                                                                        | Alkaloids [49;7; <b>4,59</b> ]<br>Flavonoids[246;18; <b>4,04</b> ]<br>Quinones [36;5; <b>3,78</b> ]<br>Coumarins [124;10; <b>3,30</b> ]<br>Iridoids [62;6; <b>3,05</b> ]<br>Phenols [59;2; <b>2,43</b> ]<br>Terpenoids [116;7; <b>1,89</b> ]<br>Lactones[29;2; <b>1,20</b> ]<br>Xanthones [18;1; <b>0,61</b> ]  |
| 13. Syphilis<br>(84)                     | Dipsacaceae (12;5; <b>7,92</b> ). Orocbanchaceae (11;4; <b>6,55</b> ).<br>Tamaricaceae (9;3; <b>5,38</b> ). Solanaceae (14;3; <b>4,08</b> ).<br>Cuscutacae (7;2; <b>4,0</b> ). Euphorbiaceae (41;5; <b>3,51</b> ).<br>Onagraceae (17;3; <b>3,58</b> ). Convolvulaceae (9;2; <b>3,41</b> ).                                                                                                                                                                                                                                                          | Flavonoids[246;15; <b>3,03</b> ]<br>Alkaloids [49;4; <b>2,16</b> ]<br>Lactones[29;2; <b>1,26</b> ]<br>Quinones [36;2; <b>0,92</b> ]<br>Iridoids [62;3; <b>0,88</b> ]<br>Terpenoids [116;5; <b>0,87</b> ]<br>Coumarins [124;5; <b>0,72</b> ]<br>Phenols [59;2; <b>0,19</b> ]                                     |
| 14. Nephritis<br>(83)                    | Athyriaceae (8;2; <b>3,71</b> ). Hipericaceae (13;2; <b>2,67</b> ).<br>Primulaceae (31;3; <b>2,24</b> ). Rutaceae (8;2; <b>3,71</b> ).<br>Sambucaceae (7;2; <b>4,03</b> ). Scrophulariaceae (85;8; <b>3,6</b> ).<br>Solanaceae (14;2; <b>2,53</b> ). Tiliaceae (9;3; <b>5,42</b> ).<br>Typhaceae (5;2; <b>4,92</b> ). Urticaceae (7;2; <b>4,03</b> ).                                                                                                                                                                                               | Flavonoids[246;24; <b>6,54</b> ]<br>Phenols [59;8; <b>4,89</b> ]<br>Iridoids [62;7 <b>;3,95</b> ]<br>Coumarins [124;10; <b>3,47</b> ]<br>Quinones [36;3; <b>1,94</b> ]<br>Alkaloids [49;3; <b>1,58</b> ]<br>Terpenoids [116;6; <b>1,46</b> ]<br>Xanthones [18;1; <b>0,66</b> ]                                  |
| 15. Cystitis,<br>cystourethritis<br>(78) | Solanaceae (14;5; <b>7,56</b> ). <i>Typhaceae</i> (5;2; <b>6,0</b> ).<br><i>Tiliaceae</i> (9;3; <b>5,62</b> ). <i>Plantaginaceae</i> (10;3; <b>5,28</b> ).<br><i>Ericaceae</i> (38;5; <b>3,95</b> ). <i>Equisetaceae</i> (10;2; <b>3,34</b> ).                                                                                                                                                                                                                                                                                                      | Phenols [59;8; <b>5,08</b> ]<br>Iridoids [62;8 <b>;4,94</b> ]<br>Flavonoids[246;18; <b>4,58</b> ]<br>Coumarins [124;11; <b>4,26</b> ]                                                                                                                                                                           |

|                 | <i>Pyrolaceae</i> (10;2; <b>3,34</b> ). <i>Primulaceae</i> (31;3; <b>2,37</b> ). <i>Rosaceae</i> (147;8; <b>2,04</b> ). | Alkaloids [49;4; <b>2,33</b> ]<br>Terpenoids [116;4; <b>0,47</b> ]<br>Lactones[29;1; <b>0,23</b> ] |
|-----------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                 |                                                                                                                         | Quinones [36;1;0,01]                                                                               |
| 16. Laryngitis  | Campanulaceae (27;5; <b>5,45</b> ). Sambucaceae (7;2; <b>4,49</b> ).                                                    | Coumarins [124;11; <b>4,76</b> ]                                                                   |
| (69)            | Solanaceae (14;2; <b>2,88</b> ). Gentianaceae (40;3; <b>2,09</b> ).                                                     | Flavonoids[246;14; <b>3,47</b> ]                                                                   |
|                 |                                                                                                                         | Terpenoids [116;8; <b>3,18</b> ]                                                                   |
|                 |                                                                                                                         | Phenols [59;4; <b>2,19</b> ]                                                                       |
|                 |                                                                                                                         | Iridoids [62;3;1,24]                                                                               |
|                 |                                                                                                                         | Quinones [30;2; <b>1,22</b> ]                                                                      |
| 17 Morto        | $\Gamma_{\rm unberbiasses}$ (41: 24: <b>24.42</b> ) Dipassesses                                                         | Lactones[29,1, <b>0,30</b> ]                                                                       |
|                 | (12:3:5 21)                                                                                                             | Elavonoids[246:16: <b>4</b> . <b>69</b> ]                                                          |
| (64)            |                                                                                                                         | Coumarins [124:5: <b>1.36</b> ]                                                                    |
|                 |                                                                                                                         | Terpenoids [116;4; <b>0.88</b> ]                                                                   |
|                 |                                                                                                                         | Alkaloids [49;2; <b>0,87</b> ]                                                                     |
|                 |                                                                                                                         | Phenols [59;2; 0,59]                                                                               |
| 18. Whooping    | Solanaceae (14;6; <b>10,24</b> ). Plantaginaceae (10;3; <b>5,97</b> ).                                                  | Terpenoids [116;11; <b>5,42</b> ]                                                                  |
| cough           | Urticaceae(7;2; <b>4,37</b> ). Araceae (9;2; <b>4,08</b> ).                                                             | Coumarins [124;11; <b>5,13</b> ]                                                                   |
| (63)            | Liliaceae (20;2; <b>2,37</b> ). Lamiaceae (173;8; <b>2,21</b> ).                                                        | Phenols [59;6; <b>4,18</b> ]                                                                       |
|                 |                                                                                                                         | Flavonolds[246;13; <b>3,41</b> ]                                                                   |
|                 |                                                                                                                         | Inuolus [02,4; <b>2,28</b> ]                                                                       |
|                 |                                                                                                                         | Quinones [36:2: <b>1 36</b> ]                                                                      |
|                 |                                                                                                                         | Alkaloids [49:2: <b>0.89</b> ]                                                                     |
| 19 Gonorrhea    | Plantaginaceae (10:3:6.08) Equisetaceae (10:3:6.08)                                                                     | Flavonoids [246;10; <b>2,16</b> ]                                                                  |
| (61)            | <i>Typhaceae</i> (5;2; <b>5,84</b> ). <i>Nymphaeaceae</i> (7;2; <b>4,82</b> ).                                          | Coumarins [124;5; <b>1,48</b> ]                                                                    |
| (01)            | Oleaceae (8;2;4,46). Malvaceae (13;7;4,42).                                                                             | Iridoids [62;3 <b>;1,47</b> ]                                                                      |
|                 | Convallariaceae (17;3;4,42). Onagraceae (17;3;4,42).                                                                    | Alkaloids [49;2; <b>0,94</b> ]                                                                     |
|                 | Chenopodiaceae (48;3; <b>1,97</b> ). Crassulaceae (26;2;                                                                | Phenols [59;2; <b>0,66</b> ]                                                                       |
|                 | <b>1,96</b> ).                                                                                                          | Lactones[29;1; <b>0,48</b> ]                                                                       |
| 20. Erysipelas  | Solanaceae (14;6; <b>10,62</b> ). Crassulaceae (26;3; <b>3,35</b> ).                                                    | Flavonoids [246;17; <b>5,47</b> ]                                                                  |
| (60)            | Convallariaceae (17;2; <b>2,77</b> ). Rosaceae (147;7; <b>2,29</b> ).                                                   | Laciones[29;4; <b>4,39]</b>                                                                        |
|                 |                                                                                                                         | Terpenoids [116:8: <b>3 65</b> ]                                                                   |
|                 |                                                                                                                         | Alkaloids [49:4: <b>2.62</b> ]                                                                     |
|                 |                                                                                                                         | Phenols [59;4; <b>2,51</b> ]                                                                       |
|                 |                                                                                                                         | Iridoids [62;3 <b>;1,51</b> ]                                                                      |
| 21.             | Valerianaceae (23; 4; <b>5,06</b> ). Ericaceae (38;4; <b>3,58</b> ).                                                    | Flavonoids [246;12; <b>3,8</b> ]                                                                   |
| Gastroenteritis | Fabaceae (171;9; <b>2,89</b> ). Alliaceae (18; 2; <b>2,63</b> ).                                                        | Iridoids [62;4; <b>2,79</b> ]                                                                      |
| (51)            | Scrophulariaceae (85;5; <b>2,41</b> ). Crassulaceae                                                                     | Phenols [59;3; <b>1,92</b> ]                                                                       |
|                 | (26;2; <b>1,96</b> ).                                                                                                   | Terpenoids [116;4; <b>1,36</b> ]                                                                   |
|                 |                                                                                                                         | Countarins [124,4, <b>1,22</b> ]<br>Alkaloids [49:2: <b>1 21</b> ]                                 |
|                 |                                                                                                                         | Ouinones [36:1:0.44]                                                                               |
| 22 Anthrax      | Solanaceae (14: 3: 5 6) Plantaginaceae (10: 2: 4 39)                                                                    | Flavonoids [246:12: <b>3.88</b> ]                                                                  |
| (50)            | Euphorbiaceae (41;4; <b>3,92</b> ). Convallariaceae                                                                     | Terpenoids [116;7; <b>3,57</b> ]                                                                   |
|                 | (17;2; <b>3,14</b> ). Asteraceae (372; 12; <b>2,3</b> ).                                                                | Phenols [59;4;2,96]                                                                                |
|                 |                                                                                                                         | Iridoids [62;4; <b>2,83</b> ]                                                                      |
|                 |                                                                                                                         | Coumarins [124;5; <b>1,96</b> ]                                                                    |
|                 |                                                                                                                         | Aikaloids [49;2; <b>1,24</b> ]                                                                     |
|                 |                                                                                                                         | Duinones [36:1:0 46]                                                                               |
|                 | Putaceae (8:3:9 16) Cuscutacee (7:2: 6 46)                                                                              | Elavonoids [246:11: <b>4.69</b> ]                                                                  |
| (36)            | $P_{\text{ubiaceae}} (24.2; 3.1) Aniaceae (1.40; 5; 2.40)$                                                              | Terpenoids [116;6; <b>3.83</b> ]                                                                   |
|                 | 1 (10)(10000 (24,2,3,1). Apiaceae (140, 3, 2,43)                                                                        | Coumarins [124;6; <b>3,63</b> ]                                                                    |
|                 |                                                                                                                         | Alkaloids [49;3; <b>3,06</b> ]                                                                     |
|                 |                                                                                                                         | Phenols [59;3;2,64]                                                                                |
|                 |                                                                                                                         | Iridoids [62;2; <b>1,39</b> ]                                                                      |
| 24. Enteritis   | Plantaginaceae (10;2; <b>5,47</b> ). Salicaceae (24;3; <b>5,11</b> ).                                                   | Havonoids [246;11; <b>4,93</b> ]                                                                   |
| (34)            | Rosaceae (147;8; <b>4,85</b> ).                                                                                         | 11100105 [02,4, <b>3,84</b> ]<br>  Ternenoids [116:4: <b>2 27</b> ]                                |
|                 |                                                                                                                         | Phenols [59:2: <b>1 56</b> ]                                                                       |
|                 |                                                                                                                         | Coumarins [124:3:1.28]                                                                             |
|                 |                                                                                                                         | Alkaloids [49;1; <b>0,54</b> ]                                                                     |
| 25. Smallpox    | Solanaceae (14;2; <b>5,38</b> ). Ranunculaceae (135; 4;                                                                 | Alkaloids [49;2; <b>2,42</b> ]                                                                     |
| · · · · ·       |                                                                                                                         | •                                                                                                  |

| (25)              | 2.65).                                                             | Quinones [36;1;1,22]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | _,).                                                               | Iridoids [62;0; <b>0,62</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   |                                                                    | Flavonoids [246;3; <b>0,59</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 26. Measles       | Sambucaceae (7;2; <b>7,84</b> ). Ranunculaceae (135;               | Terpenoids [116;5;4,03]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (25)              | 4;2,65).                                                           | Alkaloids [49;3; <b>3,96</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                    | Flavonoids [246;7; <b>3,44</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   |                                                                    | Phenols [59;2; <b>2,08</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                    | Lactones[29;1; <b>1,48</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                    | Quinones [36;1;1 <b>,22</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   |                                                                    | Coumarins [124;2; <b>0,89</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27. Diphtheria    | Solanaceae (14;3; <b>8,42</b> ).                                   | Alkaloids [49;4; <b>4,07</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (24)              |                                                                    | Coumarins [124;5; <b>3,96</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                    | Quinones [36;2; <b>3,10</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   |                                                                    | Flavonoids [246;4; <b>1,4]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                    | lerpenoids [116;2; <b>1,05</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   |                                                                    | Iridoids [62;1; <b>0,67</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 28. Scarlet fever | Solanaceae (14;2; <b>6,26</b> ).                                   | Flavonolds [246;4; <b>1,92</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (19)              |                                                                    | Quinones [30,1, <b>1,50</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   |                                                                    | Coumarins [124;2; <b>1,32</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                    | Aikaiolus [49,1, $1$ ,10]<br>Iridoide [62:1:0 02]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                                                                    | Torpopoids [116:1:0 26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 20 Dhamunaitia    | 1 amiaaaaa (170:4: <b>2 72</b> )                                   | Terpenoids [116:0: <b>0 55</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 29. Pharyngius    | Lamaceae (173,4; <b>2,73</b> ).                                    | $\frac{1}{2} \frac{1}{2} \frac{1}$ |
| (19)              |                                                                    | Iridoide [62:3: <b>/ 06</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   |                                                                    | Coumarins [124:2: <b>1 32</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                    | Elavonoids [246:3: <b>1 1]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30 Intermittent   | Putacaaa (8:2:8 15) Salicacaaa (21:2:1 03)                         | Flavonoids [246:8: <b>5.41</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| fovor             | (0,2,0,43). Salicatede (24,2,4,33).                                | Coumarins [124:5: <b>4.87</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | $L_{amiacpap}(173:3; 1.09)$                                        | Alkaloids [49:2: <b>3.06</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (10)              |                                                                    | Phenols [59:2: <b>2.69</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                    | Lactones[29;1 <b>:1.92</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                    | Terpenoids [116;2; <b>1,51</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 31. Lupus         | Peonaceae (6:2: <b>10.4</b> ). Geraniaceae (17:2: <b>5.98</b> ).   | Alkaloids [49;2; <b>3,18</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (17)              | Scrophulariaceae (85:2: <b>2.13</b> ).                             | Flavonoids [246;5; <b>3,05</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (1)               |                                                                    | Iridoids [62;2; <b>2,71</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   |                                                                    | Phenols [59;1; <b>1,10</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                    | Terpenoids [116;1;0,37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                   |                                                                    | Coumarins [124;1; <b>0,30</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 32. Sepsis        | Fabaceae (171;4; <b>3,2</b> ). Brassicaceae (93; 2; <b>2,08</b> ). | Alkaloids [49;5; <b>9,08</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (16)              |                                                                    | Flavonoids [246;3; <b>1,43]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                    | Phenols [59;1; <b>1,17</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                    | Coumarins [124;2; <b>1,16</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                    | Iridoids [62;1; <b>1,11</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 33. Urethritis    | Plantaginaceae (10;2; <b>8,81</b> ).                               | Lactones[29;1; <b>2,28</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (14)              |                                                                    | Alkaloids [49;1; <b>1,56</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                    | Phenois [59;1; <b>1,33</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                    | Indolds [62;1; <b>1,27</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34. Encephalitis  | <i>Peonaceae</i> (6;2; <b>11,49</b> ).                             | Terpenoids [116;3; <b>3,28</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (14)              |                                                                    | Phenois [59;1; <b>1,33</b> ]<br>Coumpring [124:1: <b>0 51</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 05.0              |                                                                    | Torpopoids [116:2: <b>2 06</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35. Gangrene      | Brassicaceae (93;2; <b>2,45</b> ).                                 | Elavonoide [246:2: <b>1 85]</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (13)              |                                                                    | Alkaloids [49:1: <b>1 65</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                    | Course [124:1:0 50]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 26 Choloro        | Enganna (11:2: <b>9 72</b> ) Danagan (92:2: <b>2 67</b> )          | Ternenoids [116:4: <b>4 87</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 30. Choiera       | Fayaceae (11,2,0,12). Foaceae (05,2,2,01).                         | Coumarins [124:3: <b>3.30</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (13)              |                                                                    | Flavonoids [246:4: <b>2.84</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   |                                                                    | Phenols [59:1:1.42]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 37 Bone           | Pvrolaceae (10.2.916) Solanaceae (14.2.768)                        | Iridoids [62:2: <b>3.26</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| tuberculosis      | <i>Lamiaceae</i> (173'3' <b>3 19</b> )                             | Flavonoids [246:4: <b>2.84</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (13)              |                                                                    | Alkaloids [49;1: <b>1.65</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (13)              |                                                                    | Coumarins [124;1; <b>0.59</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 38. Tynhus        | Ericaceae (38:2: <b>4.63</b> )                                     | Phenols [59;3:5.57]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| (12)                                                 |                                                                                                            | Terpenoids [116;2; <b>2,2</b> ]<br>Flavonoids [246;3; <b>2,01</b> ]<br>Iridoids [62;1; <b>1,46</b> ]                                                                      |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 39.<br>Pyelonephritis<br>(12)                        | Brassicaceae (93;2; <b>2,61</b> ).                                                                         | Terpenoids [116;5; <b>6,58</b> ]<br>Flavonoids [246;6; <b>5,09</b> ]<br>Coumarins [124;2; <b>2,09</b> ]<br>Phenols [59;1; <b>1,52</b> ]                                   |
| 40. Herpes<br>(12)                                   | Asteraceae (372; 4; <b>2,08</b> ).                                                                         | Xanthones [18;1; <b>3,36</b> ]<br>Terpenoids [116;2; <b>2,2</b> ]<br>Coumarins [124;2; <b>2,09</b> ]<br>Flavonoids [246;3; <b>2,01</b> ]<br>Iridoids [62;1; <b>1,46</b> ] |
| 41. Trichomonas<br>colpitis<br>(11)                  | <i>Nymphaeceae</i> (7;2; <b>12,01</b> ).                                                                   | Alkaloids [49;2; <b>4,19</b> ]<br>Terpenoids [116;3; <b>3,89</b> ]<br>Coumarins [124;3; <b>3,72</b> ]<br>Flavonoids [246;1; <b>0,05</b> ]                                 |
| 42. Typhoid fever<br>(10)                            | <i>Lamiaceae</i> (173;3; <b>3,19</b> ).                                                                    | Alkaloids [49;2; <b>4,44</b> ]<br>Lactones[29;1; <b>2,83</b> ]<br>Terpenoids [116;2; <b>2,54</b> ]<br>Flavonoids [246;2; <b>1,27</b> ]<br>Coumarins [124;1; <b>0,87</b> ] |
| 43. Trichophytia<br>(10)                             | Betulaceae (29;2; <b>5,97</b> ).                                                                           | Alkaloids [49;2; <b>4,44</b> ]<br>Coumarins [124;2; <b>2,42</b> ]<br>Flavonoids [246;3; <b>2,4</b> ]<br>Terpenoids [116;1; <b>0,94</b> ]                                  |
| 44. Chicken pox<br>(10)                              | Apiaceae (140;2; <b>2,2</b> ).                                                                             | Flavonoids [246;4; <b>3,52</b> ]<br>Coumarins [124;2; <b>2,42</b> ]<br>Phenols [59;1; <b>1,76</b> ]<br>Terpenoids [116;1; <b>0,94</b> ]                                   |
| 45. Tuberculosis<br>of lymph nodes,<br>glands<br>(9) | Asteraceae (372;4; <b>2,79</b> ). Grossulariaceae (8;2; <b>12,43</b> ).<br>Violaceae (26;2; <b>6,71</b> ). | Phenolds [116;4; <b>6,12</b> ]<br>Phenols [59;1; <b>1,90</b> ]<br>Coumarins [124;1; <b>0,99</b> ]<br>Flavonoids [246;2; <b>0,26</b> ]                                     |
| 46. Pyelitis<br>(9)                                  | <i>Ericaceae</i> (38;4; <b>11,26</b> ).                                                                    | Phenols [59;3; <b>6,58</b> ]<br>Iridoids [62;2; <b>4,12</b> ]<br>Flavonoids [246;4; <b>3,82</b> ]<br>Coumarins [124;2; <b>2,62</b> ]<br>Terpenoids [116;1; <b>1,06</b> ]  |
| 47. Candidal<br>stomatitis<br>(9)                    | <i>Crassulaceae</i> (26;2; <b>6,71</b> ).                                                                  | Flavonoids [246;3; <b>2,63</b> ]<br>Coumarins [124;2; <b>2,62</b> ]<br>Phenols [59;1; <b>1,90</b> ]                                                                       |
| 48. Amoebic<br>dysentery<br>(8)                      | Rosaceae (147;3; <b>4,13</b> ). Rutaceae (8;2; <b>13,20</b> ).<br>Violaceae (26;2; <b>7,16</b> ).          | Flavonoids [246;5; <b>5,41</b> ]<br>Alkaloids [49;2; <b>5,06</b> ]                                                                                                        |
| 49. Lung<br>abscess, lung<br>gangrene<br>(8)         | Brassicaceae (93;2; <b>3,45</b> ).                                                                         | Iridoids [62;1; <b>2,00</b> ]<br>Quinones [36;1; <b>2,84</b> ]<br>Flavonoids [246;1; <b>0,38</b> ]                                                                        |
| 50. Giardiasis<br>(7)                                | Asteraceae (372;4; <b>3,45</b> ). Betulaceae (29;2; <b>7,25</b> ).                                         | Phenols [59;2; <b>4,91</b> ]<br>Terpenoids [116;2; <b>3,27</b> ]<br>Flavonoids [246;2; <b>1,87</b> ]<br>Coumarins [124;1; <b>1,28</b> ]                                   |
| 51. Mumps<br>(7)                                     | -                                                                                                          | Phenols [59;1; <b>2,26</b> ]<br>Flavonoids [246;2; <b>1,87</b> ]<br>Coumarins [124;1; <b>1,28</b> ]                                                                       |
| 52. Meningitis<br>(7)                                | Poaceae (83;2; <b>4,03</b> ).                                                                              | Aikaloids [49;2; <b>5,46</b> ]<br>Coumarins [124;2; <b>3,13</b> ]<br>Flavonoids [246;1; <b>0,53</b> ]                                                                     |
| 53.<br>Dermatomycoses<br>of the scalp<br>(6)         | -                                                                                                          | Quinones [36;1; <b>3,37</b> ]<br>Phenols [59;1; <b>2,26</b> ]<br>Terpenoids [116;1; <b>1,56</b> ]<br>Flavonoids [246;1; <b>0,7</b> ]                                      |
| 54. Tetanus<br>(6)                                   | Solanaceae (14;3; <b>17,31</b> ).                                                                          | Coumarins [124;2; <b>3,47</b> ]<br>Terpenoids [116;1;1, <b>56</b> ]                                                                                                       |

|                 |                                      | Flavonoids [246;1; <b>0,7</b> ]  |
|-----------------|--------------------------------------|----------------------------------|
| 55. Plague      | Asteraceae (372;3; <b>3,11</b> ).    | Quinones [36;1; <b>3,74</b> ]    |
| (5)             |                                      | Terpenoids [116;1;1,8]           |
| (-)             |                                      | Coumarins [124;1; <b>1,71</b> ]  |
|                 |                                      | Flavonoids [246;1; <b>0,89</b> ] |
|                 |                                      | Flavonoids [246;1; <b>0,89</b> ] |
| 56. Brucellosis | Rubiaceae (24;2; <b>9,56</b> ).      | Iridoids [62;2; <b>5,79</b> ]    |
| (5)             |                                      | Coumarins [124;1; <b>1,71]</b>   |
| (-)             |                                      | Flavonoids [246;1; <b>0,89</b> ] |
| 57. Infectious- | Asteraceae (372;3; <b>3,11</b> ).    | Terpenoids [116;2;4,06]          |
| allergic        |                                      | Coumarins [124;1; <b>1,71</b> ]  |
| polyarthritis   |                                      |                                  |
| (5)             |                                      |                                  |
| 58.             | Euphorbiaceae (41:4: <b>14.72</b> ). | Flavonoids [246;3; <b>4,08</b> ] |
| Leishmaniasis   |                                      | Alkaloids [49;1; <b>3,14</b> ]   |
| (5)             |                                      |                                  |
| 59. Foot and    | -                                    | Phenols [59;1;2,81]              |
| mouth disease   |                                      | Terpenoids [116;1;1,8]           |
| (5)             |                                      | Coumarins [124;1; <b>1,71</b> ]  |
|                 |                                      |                                  |

#### CONCLUSIONS

1. In the set of species used for infectious diseases, as a rule (for 56 diseases out of 59), the occurrence of representatives of a certain family or families of plants is significantly increased.

2. Families, including those close in the number of species in the flora of medicinal plants, differ sharply in the number of diseases (from 0 to 17) reliably associated with them through an increase in the occurrence of the species used.

3. In a kit used for an infectious disease, as a rule, there is a significant increase in the occurrence of species containing at least one compound that has an experimentally established antimicrobial or antiviral effect, and belonging to one of 9 groups (flavonoids, terpenoids, alkaloids, phenols, coumarins, lactones, iridoids, xanthones, quinones). As a rule, such compounds from more than one group (up to 8) reliably gravitate towards the set of species used.

4. Infectious diseases differ significantly in combinations of groups of chemical compounds, which reliably gravitate towards the sets of plant species used.

5. Information about the increased occurrence in kits used for infectious diseases of species of certain families, and species containing antimicrobial or antiviral compounds of certain groups, can be used to assess the prospects of families, plant species, and chemical compounds when studying their antimicrobial, antiviral properties properties.

### CONFLICTS OF INTEREST

The author declare that he has no potential conflicts of interest.

#### REFERENCES

- Bhattarai, A., Ali, A. S., Kachur, S. P., Mårtensson, A., Abbas, A. K., Khatib, R., ... & Björkman, A. (2007). Impact of artemisinin-based combination therapy and insecticide-treated nets on malaria burden in Zanzibar. *PLoS medicine*, 4(11), e309.
- Budantsev, A. L., Lesiovskaya, Ye. Ye., Abysheva, L.
  N., Belenovskaya, L. M., Bobyleva, N. S., Bykova,
  O. P., ... & Ulicheva, G. M. (2001).
  Dikorastushchiye poleznyye rasteniya Rossii. SPb. 663 p. [In Russian]
- Lakin G.F. (1973). Biometriya. M.: Vysshaya shkola, 343 p. [In Russian]
- Popov, P. L., & Botvinkin, A. D. (2008). Analiz svedeniy o primenenii rasteniy dlya profilaktiki i lecheniya beshenstva. *Sibirskiy meditsinskiy zhurnal (Irkutsk)*, 78(3), 91-95. [In Russian]
- Popov, P. L. (2021). Svyaz' antibakterial'noy aktivnosti vida rasteniy s khimicheskimi soyedineniyami

raznykh grupp: statisticheskiy podkhod. *Vestnik Biomeditsina i sotsiologiya*, 6(3), 28-36. [In Russian] Semikhov V.F. (2001). Biologicheski aktivnyye veshchestva rastitel'nogo proiskhozhdeniya, v trekh tomakh, M.: Nauka, 349, 763 p. [In Russian]