Journal of Stress Physiology & Biochemistry, Vol. 17 No. 4 2021, pp. 77-84 ISSN 1997-0838
Original Text Copyright (cc) 2021 by Rakhra and Sharma



ORIGINAL ARTICLE
Full text in PDF Download to Citation Manager Permanent url
         

Role of Boiling Soluble Protein Disulphide Isomerase (BsPDI) under Drought Stress in Divergent Cultivars of Wheat

Gurmeen Rakhra1,2, Arun Dev Sharma1*

1 PG Department of Biotechnology, Lyallpur Khalsa College, G.T. Road, Jalandhar-144001, Punjab, India.
2 Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab (India) - 144411


*E-Mail: arundevsharma47@gmail.com, Fax: 0181-2241465 

Received June 12, 2021

Background: To protect them from water stress induced-ROS- mediated protein unfolding and aggregation, plants are equipped with a wide range of antioxidant redox molecular chaperonic proteins like Protein disulphide Isomerase (PDI) (E.C.5.3.4.1). These are a diverse group of proteins that in vivo bind to misfolded or unfolded proteins and play an important role to form specific three dimensional conformation of the functional proteins. In addition, stress conditions induce altered and intensified PDI expression in plant cell, thereby highlighting the role of these proteins under abiotic stress conditions.
The context and purpose of the study; The main objective of the study was to determine drought stress- induced changes in the modulation of the boiling soluble protein disulphide isomerase (BsPDI) in response to drought at two different developmental stages {38 Days Post Anthesis (DPA) and 52 DPA} in Triticum aestivum.  
Results, the main findings; A temporal regulation of BsPDI accumulation in a cultivar dependent manner was observed under control and drought stress. SDS-PAGE and Western blot analysis revealed strong induction of BsPDI17 under drought conditions only in the tolerant cv. PBW 527 at 38 DPA. Contrary to this, unchanged BsPDI17 accumulation was detected in the sensitive cv. PBW 343 at 38 DPA under drought. However, at 52 DPA, there was a marked decline in BsPDI17 accumulation in the sensitive cv. PBW 621 under stress conditions.
Conclusions, brief summary and potential implications: Based upon our results, significance of BsPDI in the wheat cultivars differing in drought resistance during stress conditions is discussed. 

Key words:   Boiling soluble protein disulphide isomerase, chaperones, Days post Anthesis, drought stress, Triticum aestivum. 

Back to issue content
интернет статистика
Free blog 

counters