Review |
Salt stress-induced limitation in crop growth and produce is a critical problem worldwide. The prerequisite to developing salt-tolerant plants of commercial importance is understanding the plant responses to salinity exposure at physiological, biochemical, and molecular levels, integrating various approaches to understanding underlying salt tolerance mechanisms, and utilizing naturally occurring genetic resources available for salt tolerance. In this review, plant responses and associated salt tolerance, at physiological and biochemical levels through ion homeostasis, osmolyte accumulation, hormonal regulation, antioxidant responses, and mitogen-activated protein kinase cascade signaling and molecular responses through transcription factors, different gene expressions, non-coding RNA production, and epigenetic modifications are presented.
Key words: Epigenetic modifications, ion homeostasis, non-coding RNA, salinity tolerance, transcriptional factors