ORIGINAL
ARTICLE |
Data source : Google Scholar QueryDate : 2016-12-24 Cites : 0 |
A fundamental property of many organisms is the ability to feel, to assess direction of the signal action and respond to the environmental conditions. It is known that chromatin plays a major role in organizing the regulation of gene activity. However, our understanding of how state of the suprastructure organization of chromatin and its proteins reacts not only to changes in the environment, but also on the development of specific signals remains largely unclear. In the course of this work, we have analyzed the result of the various ways of chromatin modifications: the regulatory Arg-X protease-processing and inhibition of protein deacetylation with sodium butyrate. Sodium butyrate causes cell cycle arrest in the G0/G1 phase, and promotes of duration of the transcriptional activity of chromatin. Experiments on molecular-genetic state of the chromatin matrix were carried out at the induction of growth morphogenesis in the physiological period of active water absorption of mature seeds and wheat germs, which were purposefully transformed and formed in different environmental conditions. During focused, long-term transforming of spring wheat Artemovka into winter wheat Mironovskaya 808 and the last of them again into Mironovskaya Spring wheat while stopping of the cell cycle in the G0/G1 phase, mainly occurs the active Arg-X protease-processing at the level of non-histone proteins, and linker histones of suprastructures chromatin. We assume that the regulatory proteolytic processing and prolongation of acetylation of proteins can be interconnected in the regulation of conformational transitions of chromatin at the different levels of its organization: both suprastructures and at the more profound proteomic level of non-histone and histone blocks, and have its peculiarities during the period of transcriptional activation. We hope that the study peculiarities of locations of regulatory proteolysis in the conditions of inhibition of deacetylation in spring and winter forms of wheat can give a new possibility for understanding the epigenetic code of plants in order to increase crop yields and quality.
Key words: Winter wheat, chromatin, histones, inhibition of deacetylation, protease-processing