Journal of Stress Physiology & Biochemistry, Vol. 10 No. 1 2014, pp. 93-111 ISSN 1997-0838
Original Text Copyright (cc) 2014 by   Sadak, Dawood



ORIGINAL ARTICLE
Full text in PDF Download to Citation ManagerPermanent urlData source :  Google Scholar
QueryDate : 2016-12-24
Cites : 13
         

Role of ascorbic acid and α tocopherol in alleviating salinity stress on flax plant (Linum usitatissimum L.)

Mervat Sh. Sadak and Mona G. Dawood

Botany Department, National Research Centre, Postal Code 12622, Cairo, Egypt

*E-Mail: monagergis@yahoo.com

Received August 25, 2013


Salinity is one of the environmental challenges in the world affecting on several physiological processes and the most limiting factor of plant productivity and quality. Two pot experiments were conducted at the wire house of National Research Centre, Cairo, Egypt during two successive seasons of 2010/2011 and 2011/2012 to assess the efficiency of two antioxidant vitamins (ascorbic acid at 1.13 and 2.27 mM or α tocopherol at 0.46 and 0.93 mM) and/or salinity stress at (0.0, 3.08, 6.16, 9.23 ds/m) on photosynthetic pigments, protein, carbohydrate, minerals, oil contents and yield as well as fatty acids composition of the yielded oils of three flax cultivars (Sakha 3, Giza 8 and Ariane). The data revealed that salinity stress caused significant and gradual decreases in total photosynthetic pigments, polysaccharides, total carbohydrates, total proteins and the uptake of Mg, K, Ca and P in the leaves of three flax cultivars with increasing salinity levels (3.08, 6.16, 9.23 ds/m). Otherwise, significant and gradual increase appeared in both Na and Cl. Ascorbic acid and α tocopherol at different concentrations caused significant increases in photosynthetic pigments, total carbohydrates and protein contents in the leaves of flax plants irrigated either with tap water or saline solution as compared with their corresponding controls. Exogenous application of ascorbic and α tocopherol at different concentrations exhibited decreases in Na and Cl whereas increases appeared in Mg, K, Ca and P relative to their corresponding control. Ascorbic acid (1.13 and 2.27 mM) and α tocopherol (0.46 and 0.93 mM) caused marked increases in yield and yield attributes of three flax cultivars either in plants irrigated with tap water or saline solution as compared to corresponding control. Ascorbic acid effects were more pronounced than α tocopherol effects. In addition, the higher level of two vitamins was more pronounced than the lower level. Regarding plants irrigated with tap water, it was noted that ascorbic acid at 2.27 mM caused significant increase in oil content by 19.75 % in Giza 8 whereas α tocopherpl at 0.93 mM caused significant increase by 14.83% in Sakha 3 and 13.70% in Ariane. Regarding plants irrigated with saline solution (9.23 ds/m), it was found that α tocopherol at 0.93 mM caused significant increase in oil % by 30.84 %, 9.66 % and 35.62 % in Sakha 3, Giza 8 and Ariane cv. respectively. Responses of three flax cultivars to salt stress were more or less similar; since salinity stress caused marked increases in total saturated fatty acids accompanied by decreases in total unsaturated fatty acids as salinity levels increased. Myristic acid (C14:0) and oleic acid (C18:1) were the most affected saturated and unsaturated fatty acids in response to different salinity levels. The effect of ascorbic acid at 2.27 mM and tocopherol at 0.93 mM were found to be contrary to that of salinity as marked increases appeared in unsaturated fatty acids as compared with control plants.

It could be concluded that foliar application of ascorbic acid and α tocopherol could play an enhancement role and alleviate the harmful effect of salinity stress on many metabolic and physiological processes of three flax cultivars that reflected in increasing seed yield quality and quantity.


Key words:    antioxidant vitamins, Linum usitatissimum, minerals, oil quality, saline solution

Back to issue content
интернет статистика
Free blog 

counters