Journal of Stress Physiology & Biochemistry, Vol. 8 No. 1 2012, pp. 114-137 ISSN 1997-0838
Original Text Copyright (cc) 2012 by Alhadi, AL-Asbahi, Alhammadi and Abdullah



ORIGINAL ARTICLE
Full text in PDFDownload to Citation ManagerPermanent urlData source :  Google Scholar
QueryDate : 2016-12-24
Cites : 2
         

The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni Pomegranates

Alhadi Fatima A.1, Adnan A.S. AL-Asbahi2*, Arif S.A. Alhammadi3, and Qais A.A. Abdullah4

1 Department of Biology (Plant Physiology-Ecology), Faculty of Science, Sana’a University Plant, Sana’a Republic of Yemen.
2*Department of Biology (Biotechnology and Molecular Genetics), Faculty of Sciences, Sana’a University, P. O Box 14686, Sana’a, Republic of Yemen, email:
3 Department of Biology (Plant Genetics), Faculty of Science, Sana’a University Plant, Sana’a Republic of Yemen.
4 Department of Biology (Fungal Microbiology), Faculty of Sciences, Sana’a University, Sana’a, Republic of Yemen.

*E mail: adnanasbahi@yahoo.com

Received December 18, 2011

Plant seeds used rely on a wide range of internal mechanisms and physio-chemical factors to ensure their germination under favorable environmental conditions. Most plant seeds  have complex process of germination, including water, oxygen, temperature availability, genome-wide gene expression, signal transduction, hormones stimulations, inhibitors removal and catalytic protein synthesis. In addition, influences of seeds nutrient values such as, protein, lipids, sugars and free amino acids have a special importance. Regarding, seeds free amino acids. Discussion of these individual factors needs to be put in context of their role in germination processes. Regarding, free amino acids seed storage, there is limited information about their relevant functions in activation and/or deactivation of required metabolic mechanisms and interactive compounds involved in this process in commercial plant cultivars. Therefore, current study was aimed to determine the probable influence of free amino acid compositions of seeds on germination process of two different (Punica granatum L.) pomegranate cultivars including wild type Automi cultivar and edible Khazemi cultivar. In particular, we focused on the impact of amino acids contents variations on germination process and associated AAs compositional changes during various stages of germination and seedlings establishment. Amino acid analysis using HPLC detected all the essential and non-essential amino acids in the raw seeds of the studied cultivars, Automi and Khazemi along with AAs compositional changes occurred during different stages of seed germination. These AAs have been extensively analyzed in the context of their role in dormancy breaking capacities in plants species. Automi raw seeds are rich in Phe, that, is strongly related to ABA synthesis and hence might be responsible for the dormancy of Automi seeds, Khazemi raw seeds have sufficient levels of Arg, Glu and Met that have been reported to enhance seeds germination in plant, therefore Khazemi germination capacity was assumed to be regulated more or less by these AAs. In addition, changes in amino acid composition in the germinated Khazemi cultivar during various stages of seeds germination including imbibition, germination, and sprouts stages have been noticed to change in response with germination demands. This suggests that amino acids reserves in dry seeds are major determinant for germination capacity and germination behavior in the following steps of germination. The noticed particular AAs increase/decrease along the time course of Khazemi pomegranate germination till establishment of heterotrophic seedlings were used as cornerstones for elucidation and deduction of putative function and relevant biochemical pathways controlling initiation of seeds germination and seedlings developments. Based on publicly available databases of model plants and literatures surveys, we established correlations between prevailing AAs factors as biochemical parameters actively involved in seeds dormancy-breaking and germination process.

Key words: Amino acids (AAs), pomegranate seeds, germination, dormancy, arginine, HPLC



Back to issue content
интернет статистика
Free blog 

counters